Bioenergy and biofuels: History, status, and perspective

Document Type

Journal Article

Publication Title

Renewable and Sustainable Energy Reviews

Publication Date


Date Added



The recent energy independence and climate change policies encourage development and utilization of renewable energy such as bioenergy. Biofuels in solid, liquid, and gaseous forms have been intensively researched, produced, and used over the past 15 years. This paper reviews the worldwide history, current status, and predictable future trend of bioenergy and biofuels. Bioenergy has been utilized for cooking, heating, and lighting since the dawn of humans. The energy stored in annually produced biomass by terrestrial plants is 3–4 times greater than the current global energy demand. Solid biofuels include firewood, wood chips, wood pellets, and wood charcoal. The global consumption of firewood and charcoal has been remaining relatively constant, but the use of wood chips and wood pellets for electricity (biopower) generation and residential heating doubled in the past decade and will increase steadily into the future. Liquid biofuels cover bioethanol, biodiesel, pyrolysis bio-oil, and drop-in transportation fuels. Commercial production of bioethanol from lignocellulosic materials has just started, supplementing the annual supply of 22 billion gallons predominantly from food crops. Biodiesel from oil seeds reached the 5670 million gallons/yr production capacity, with further increases depending on new feedstock development. Bio-oil and drop-in biofuels are still in the development stage, facing cost-effective conversion and upgrading challenges. Gaseous biofuels extend to biogas and syngas. Production of biogas from organic wastes by anaerobic digestion has been rapidly increasing in Europe and China, with the potential to displace 25% of the current natural gas consumption. In comparison, production of syngas from gasification of woody biomass is not cost-competitive and therefore, narrowly practiced. Overall, the global development and utilization of bioenergy and biofuels will continue to increase, particularly in the biopower, lignocellulosic bioethanol, and biogas sectors. It is expected that by 2050 bioenergy will provide 30% of the world’s demanded energy.






Environmental Sciences