Title

Reducing the environmental impact of aquaculture

Document Type

Book

Publication Date

2002

Date Added

2022-03-29

Abstract

Aquaculture has great potential to help supply the nutritional needs of a growing population. To date, however, the benefits that aquaculture can have, have largely been overshadowed by the environmental degradation some segments of the industry have caused. The following body of work describes my efforts to help reduce the environmental impacts of aquaculture. By integrating aquaculture production into traditional agriculture, the impact of farming on already limited water resources and the reliance on chemical fertilizers can be reduced. Recent expansion of the aquaculture industry in Arizona has made it possible to study the integration of olive groves with marine shrimp culture. In chapter 3, I describe the characterization and evaluation of the effluent from an inland, low-salinity shrimp farm as a potential source of irrigation water. I found that 0.41 kg of ammonia-nitrogen, 0.698 kg of nitrite-nitrogen, 8.7 kg of nitrate-nitrogen and 0.93 kg of total phosphorus (TP) were made available as fertilizer each day in the effluent water. Based on the results of this first study, I decided to conduct a farm trial to quantify the effects of these shrimp farm effluents on olive trees. This work is described in chapter 4. Trees in all treatment groups grew an average of 40.1 cm over the four month study period. While growth of trees irrigated with shrimp farm effluent did not improve in respect to the other treatments, our results do indicate that irrigating with low-salinity water had no noticeable negative effects. Chapter 5 describes work conducted in Idaho, as part of a larger study aimed at reducing the effluent loads of phosphorus (P) from high density, flow-through aquaculture facilities. Research steps were taken to establish a relationship between TP and the carbon 12/13 isotope ratio (δ 13C) and/or the nitrogen 14/15 isotope ratio (δ15N). Our findings suggest that both δ15N and δ 13C are good better proxies for P, after correcting for P retention. A linear regression of %P (corrected) on δ13C and δ 15N resulted in R2 values of 0.843 and 0.8622, respectively. This suggests that by tracking δ15N and/or δ 13C through a high-density, flow-through aquaculture facility over time I will be able to determine the residence time of P with a high degree of accuracy.

ISBN

0-493-64978-6

Keywords

Climate

Disciplines

Environmental Sciences

Publisher

The University of Arizona

Share

COinS